Lipid membranes not only delineate the outer boundaries of the cell; they also provide an effective way to compartmentalize biological reactions inside of cells. But membranes are far from being only passive barriers. They are highly dynamic signaling hotspots on which multiple pathways controlling cell physiology converge. The PI3K pathway is involved in cell growth, metabolism, and proliferation, and is frequently dysregulated in cancer. One particular signal transducer in the pathway is the serum and glucocorticoid-regulated protein kinase 3 (Sgk3), which is activated by the phospholipid phosphatidylinositol 3-phosphate (PI3P) generated downstream of growth factor signaling. Sgk3 has two domains – a lipid binding domain and a kinase domain that propagates the signal by phosphorylating an array of molecules that implement the appropriate change in cell behavior, called effector molecules. “PI3P has previously been thought of as a molecular anchor that simply ensures the correct localization of the kinase”, says first author Daniel Pokorny, who pursues his PhD studies in the group of Thomas Leonard. “Our findings add an additional role of this lipid in that it directly stimulates the kinase activity of Sgk3”.
The scientists reconstituted the activation of Sgk3 in real-time on synthetic membranes. They found that the two domains of Sgk3 communicate with each other. In the absence of PI3P, its PI3P-binding domain maintains the kinase domain in an inhibitory conformation. The scientists discovered that the PI3P binding pocket is inaccessible in this conformation, which raises the threshold PI3P concentration required to activate Sgk3. These findings have obvious consequences for the spatiotemporal activation of Sgk3. It was previously assumed that the active conformation of kinases such as Akt and Sgk3 must dissociate from the membrane in order to encounter and phosphorylate their targets. “The problem with this model is that it essentially uncouples kinase activity from the activating stimulus”, explains group leader Thomas Leonard. “Our work shows that Sgk3 still needs to be bound to PI3P in order for the kinase to actually propagate the signal”.
Sgk3 has been observed to be upregulated in some cancers that exhibit paradoxical hypoactivation of Akt. While its potential role in cancer makes it an attractive therapeutic target, developing highly specific kinase inhibitors has historically been quite challenging, since the ATP-binding pocket is highly conserved in all protein kinases. The scientists’ findings could help overcome this specificity problem for Sgk3. “The intramolecular interface between the two domains is unique to Sgk3”, says lead author Daniel Pokorny. “The interface is therefore a potential therapeutic target for allosteric inhibitors that would lock this kinase in a closed, inactive conformation by binding to the interface”.
Publication:
Daniel Pokorny, Linda Truebestein, Kaelin D. Fleming, John E. Burke, Thomas A. Leonard: In vitro reconstitution of Sgk3 activation by phosphatidylinositol 3-phosphate. Journal of Biological Chemistry, 2021.
Chromatin as a gatekeeper of chromosome replication
Mind matters. VBC mental health awareness
The multiple facets of Hop1 during meiotic prophase
Chromosomes as Mechanical Objects: from E.coli to Meiosis to Mammalian cells
Convergent evolution of CO2-fixing liquid-liquid phase separation
Viral envelope engineering for cell type specific delivery
New ways of leading: inclusive leadership and revising academic hierarchies
How an opportunistic human pathogen colonizes surfaces - From pathogen behavior to new drugs
Title to be announced
Decoding Molecular Plasticity in the Dark Proteome of the Nuclear Pore Complex
Probing the 3D genome architectural basis of neurodevelopment and aging in vivo
How to tango with four - the evolution of meiotic chromosome segregation after genome duplication
Multidimensional approach to decoding the mysteries of animal development
Membrane remodeling proteins at the junction between prokaryotes and eukaryotes
Connecting mitotic chromosomes to dynamic microtubules - insight from biochemical reconstitution
Neurodiversity in academia: strengths and challenges of neurodivergence
Gene expression dynamics during the awakening of the zygotic genome
When all is lost? Measuring historical signals
Suckers and segments of the octopus arm
Using the house mouse radiation to study the rapid evolution of genes and genetic processes
CRISPR jumps ahead: mechanistic insights into CRISPR-associated transposons
Title to be announced
Enigmatic evolutionary origin and multipotency of the neural crest cells - major drivers of vertebrate evolution
Visualising mitotic chromosomes and nuclear dynamics by correlative light and electron microscopy
Bacterial cell envelope homeostasis at the (post)transcriptional level
Polyploidy and rediploidisation in stressful times
Prdm9 control of meiotic synapsis of homologs in intersubspecific hybrids
RNA virus from museum specimens
Programmed DNA double-strand breaks during meiosis: Mechanism and evolution
Title to be announced